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Abstracr Using an approach suggested by Moser, classical Hamiltonians are generated that 
provide an interpolating flow to the stroboscopic motion of maps with a monotonic twist 
condition. The quantum properties of these Hamiltonians are then studied in analogy with recent 
work on the semiclassical quantization of systems based on P o i n c d  surfaces of section. For 
the generalized standard map, the correspondence with the usual classical and quantum results is 
shown, and the advantages of the quantum Moser Hamiltonian demonstrated. The same approach 
is then applied to the free motion of a particle on a 2-torus, and to the circle billiard. A Datu,@ 
quantization condition based on the eigenphases of the unitary time-development operator is 
applied, leaving the exact eigenvalues of the CONS, but only the semiclassical eigenvalues for 
the billiard; an explanation for this failure is proposed. It is also seen how iterating the classical 
map commutes with the quantization. 

1. Introduction 

Quantization techniques based on a Paincar6 surface of section (hereafter PSS) have provided 
much inspiration recently in the .study of the semiclassical properties of chaotic systems. 
The semiclassical quantization procedure of Bogomolny [2] involved the T-operator as the 
semiclassical version of the classical are.-preserving map of the chosen PSS onto itself. 
Likewise the scattering approach of Doron .and Smilansky [3,4], used the semiclassical 
S-matrix as the analogue of the Paincare scattering map [5], with the PSS being the billiard 
boundary. This PSS was also important in [6] where the corrections to the leading-order 
semiclassical results were found for billiard systems. 

Interest in the area-preserving maps themselves goes back further, with the standard 
[7-91, baker [lo, 111 and cat maps [12,131 d l  providing much insight into the 
correspondence between chaotic classical dynamics and quantum kinematics; see also 
[14,15]. In such cases viewing the mapping as the ‘stroboscopic’ picture of the flow 
generated by an underlying Hamiltonian i s  not always necessq or even possible. The 
quantum properties of interest are derivable from the unitary time-development operator for 
one period, and the details associated with times in between the applications of this operator 
have up to now been of secondary importance. 

Nevertheless, it is still of interest to know whether an interpolating flow can be found 
for a given map. An affirmative response to this question for monotonic twist maps was 
given in [l], a brief review of which will be given in section 2. The construction of the flow 
is, loosely speaking, the inverse of the Poincare construction where a map is derived from 
a flow. But it is also highly non-unique, since for generic maps there are many possible 
interpolating flows. To aid calculation, the simplest possible flow (linear in time and space) 
is chosen, and in section 3, the classical mechanics that results from this is presented for 
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generalized standard maps, the free motion of a particle on a 2-torus and for the boundary 
map of the circle billiard. 

In section 4 this approach is quantized, and the consequences of this are investigated 
and compared with known quantum results. This is the central p v s e  of this paper. With 
the non-uniqueness of the classical prescription, and the generic appearance of gauge-like 
fields that lead to operator ordering problems, the quantized Moser Hamiltonian touches 
on some of the deeper aspects of the quantum-classical correspondence. So, although it 
is something of a mathematical curiosity as far as semiclassical mechanics is concerned, 
Moser’s beautiful idea provides a new and interesting setting for studying the semiclassical 
propertics of zca-i-prp.np.-miag m a p  

P A  Boasman and U Smilansb 

2. Monotonic twist maps and Moser’s Hamiltonian 

Consider a two-dimensional phase space labelled by (x, p) such that points (x, p) and 
(x + 1,  p) are identified. Such a cylindrical phase space was adopted in [I] though the 
periodicity condition can be relaxed without affecting the results. An area-preserving map 
of this phase space onto itself, XI = f ( x o .  PO), p1 = g(x0. PO), is then a monotonic twist 
map if 

axl 
aPo 
- > o  

so that as the initial point moves up the cylinder, it maps (‘twists’) increasingly to the 
right. The alternative inequality sign (c) can also be used; the most important point that 
is required here is that it has a constant sign. One of the important results in [ l ]  was 
that (1) can be directly related to the Legendre condition aZL/aiZ > 0 on the Lagrangian 
that Moser introduces to provide the interpolating motion between (x0,po) and (XI. p i ) .  
This in turn translates into the interpolating Hamiltonian being optical, aZH/apZ > 0, the 
mathematical consequences of which have been investigated by Bialy and Polterovich [16], 
who have also generalized Moser’s result to higher dimensional phase spaces [17]. 

Any area-preserving map can be expressed in terms of a generating function, h(xo, xl). 
The mapping is then expressed implicitly by 

This is automatically area-preserving, conserves the periodicity, and the analogue to the 
twist condition is a2h/axoaxl < 0. The search for an interpolating flow consists of finding 
a Lagrangian L ( x ( t ) ,  i ( t ) ,  f )  which satifies the following conditions. 

There exists a flow x ( t )  which solves the Lagrange equation and which satisfies the 
boundary conditions 

x(0) = xo x(1) =XI . (4) 

The generating function for the mapping, h(x0, xl) can be written as the action along 
the classical path x ( t )  

1 

h(xo,xl) = 1 d t U x ( t ) , W , t ) .  (5) 
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If there is an underlying interpolating flow, then it could either be from a time- 
independent system in two-dimensions, or a periodic the-dependent system in one- 
dimension. In the former case, the flow would exist outside the PSS and the mapping would 
represent the points of intersection of the flow with the PSS. However, Moser adopted the 
simpler approach of looking for a flow defined purely on the PSS, which is more naturally 
associated with the latter case. In this way any extra dimensions ‘hidden’ by the mapping 
can be ignored. 

Moser’s approach provides a way of constructing the interpolating Lagrangian in terms 
of the map by inverting (5) under the assumption that the only extremal motion that carries 
xo to X I  is linear in time, 

(6) 

This is the ceneal assumption in [l], and is important in simplifying the Euler-Lagrange 
equations sufficiently to allow the inversion to take place. The other, less important, 
assumption is related to the fact that any Lagrangian is only defined up to an arbitrary 
‘gauge’; the addition of a total time derivative of a function of position and time does not 
affect the classical mechanics. It is important to include this freedom when inverting (3, 
since such a gauge is generally necessary to correctly determine the value of the action 
between all pairs of points; see [l] for more details. Moser chooses a gauge that varies 
linearly in time. It will be shown below that any other time dependence of the gauge does 
not change the classical or quantum results. 

The Lagrangian that gives (5) subject to (4) can then be written in terms of the map 

x ( t )  = xo + t(x1 - xo) . 

h(x0, XI) as 111 

L ( x , y = x , t ) =  - d y ’ ( y - y ’ ) h , , , ( x - y ’ t , x + y ’ ( l  - t ) ) + y m , ( t , x ) + m , ( t , x )  

(7) 

where the function m ( t . x )  was chosen in [l] with linear time dependence for simplicity, 
i.e. 

LY 

m , ( t , x ) = - ( l  - t ) h , ( x , x ) + t h , ~ ( x , x )  (8) 

m , ( t , x )  = h ( x , x ) .  (9) 

This will be used in the following, but in general the only necessary condition on m(t, x )  
is 

m(l,xd-m(O,xo) =h(xo ,xd - so (xo , x~)  (10) 

for all xo and XI. Here SO is the action corresponding to the time integral along the 
extremal linear path of the first term on the right of (7). It is straightforward to check that 
the Lagrangian given by (7) possesses the desired propezties. 

It is worth pointing out at this juncture that although the induced motion is free, the 
Lagrangian (7) need not be simply related by a gauge transformation to the ‘free-particle’ 
Lagrangian, L = x2/2. This is because any Lagrangian which is only a function of velocity, 
and which has Li i  # 0, gives free-particle motion, is can be seen fiom the Euler equations, 

. d a u k )  _. . a m  - x L & ) = - = O .  
ax p = - - -  dt a i  
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These Lagrangians cannot generally be related to the usual freeparticle Lagrangian using 
a gauge. This fact is important in giving Moser’s approach sufficient latitude to impose 
free-particle motion on all monotonic twist maps. 

In [I], Moser goes on to show how the discontinuities in the periodically time-continued 
Lagrangian can be dealt with by shifting them inside the interval r E [0, 1) and then 
smoothing using a convolution with a Cm sampling function of arbitrarily small extent in 
time. In this way, the mapping action can be preserved, as can the twist condition throughout 
the whole interval. While this is necessary to achieve a mathematically valid continuation 
in time, of more interest here is studying the quantum implications of Moser’s Hamiltonian. 

P A  Boasmnn and U Smilansky 

3. Some classical mechanical examples. 

In order to show Moser’s technique at work, three examples will now be given. The 
generalized standard map is a useful example of a time-dependent system where the ‘PSS’ is 
the full phase space viewed stroboscopically. Moreover, the results found can be compared 
against known results as a test of Moser’s approach. The free motion on a torus and the 
circle billiard then provide cases where the PSS is smaller than the full phase space, and so 
Moser’s imposed flow is totally artificial. 

3.1. The generalized standard map 

Consider first the generalized standard map generating function where the ‘kick‘ is at the 
endpoint of the mapping 

This was alluded to in [I], but no classical or quantum implications were considered..Using 
(7) this gives the Hamiltonian 

(13) 1 H M & , P , ~ )  = i . (p  -m, ( t ,~) )*  - m , ( t , x )  

for all m ( t , x )  satisfying (10): Moser’s choice gives m ( t , x )  = - rV(x) .  It should be 
remembered that this Hamiltonian is strictly only valid on t E [O, 1). 

At first sight, (13) bears no obvious relation to the usual generalized standard map 
Hamiltonian 

reshicted to just one time step, where Sper(f) is the periodic delta function with spikes at 
the integers. Only when (13) is extended to all time does the connection appear. This can 
be easily done using Moser’s choice of m(r, x ) ,  and replacing the t in m, by [ t ) ,  which is 
the fractional part o f t .  It is then simple to show that 

(15) 
d 

LMos = LSM - ,(ft,V(x)) 

and so both give the same classical mechanics. In principle this equivalence should hold 
whatever the choice of m(t, x). 
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3.2. Free motion on a torus 

Consider a rectangle with sides of length 1 and a, and periodic boundary conditions. Free 
motion on this surface is equivalent to free motion on a 2-torus. Such a geometry has been 
studied extensively in the past, particularly when the torus has an obstacle on it such that 
the particle will scatter specularly. Indeed, with a circular obstacle, this system was one of 
the first to be proven ergodic [18] (see also [19]), while with a square obstacle, Richens 
and Berry [20] showed how the integrability conditions requisite for a global foliation of 
phase space with 2-ton are subtly broken, leaving the system pseudo-integrable. 

For simplicity, the torus in this case will be taken as empty, and the PSS will be taken 
as a circle parallel to the ’side’ of unit length. In this case the classical map is 

PI =Po 
mod 1 

where P is the total momentum of the particle on the torus. With the modulo condition 
absorbed by the identification x x + 1, this mapping can be represented by the generating 
function 

h(xo, X I )  = PJa2 + (XI - XO)* (18) 

which satisfies the monotonic twist map condition. The corresponding Moser Lagrangian 
and Hamiltonian are then 

Because the velocity on the Pss has been chosen to be constant and equal to XI - x g .  it is 
easy to see that any map satisfying h(x0, XI)  = h(xl - xg) will beget a Moser Lagrangian 
of exactly the same form but with .t replacing x1 - X O ;  this can be seen by comparing (18) 
with (19). 

3.3. Billiard boundary maps 

Much of the recent work using Pss’s for quantization has considered billiard systems where 
the boundary forms a useful PSS [21]. Defining the scalar distances around the boundary 
~ 0 ~ x 1 .  the generating function for the mapping can be written as 

h(xo.xi) = PP(XO,~XI) (21) 

where P is the momentum of the particle inside the billiard, and ~ ( X O ,  XI) = lr(Xd - T ( x I ) I  
is the length of the chord connecting xo to X I .  For simplicity, only convex billiards. will be 
assumed here to avoid problems caused by ghosts. Such maps are monotonic twist maps, 
though they satisfy the opposite sign of inequality to (1); the mixed derivative of h(x0, XI) 

being I61 

where the cosines are defined by 
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and ?%(x) is the outward normal vector at x .  For convex billiards (22) is always positive, 
and finite if the boundary is smooth. 

P A  Boasman and U S m i h b  

Using this, and the substitution z = x - y’t, the Moser Lagrangian can be written as 

As a simple test of this approach consider the circle billiard where the circle has a radius 
a. In terms of the PSS coordinates introduced above, the map and its corresponding Moser 
Lagrangian and Hamiltonian, can be written as 

h(xo, x,) = 2Pa sin(ir(x, - xo)) 
LM,,~(X,X. t) = 2Pasin(irx) 

ffMOs(x. p ,  t )  = -tan-’ - p2 
P 
JT 

The fact that the Lagrangian and Hamiltonian are independent of x is a natural consequence 
of the symmetry of the circle billiard. For convex billiards with more complicated boundary 
shapes, it is expected that the Hamiltonian wiIl generalIy depend on both x and t ,  where the 
dependence on x will preserve the periodicity of the phase space [I], and t is understood as 
a fictitious time. More significantly however, even for the circle billiard, there is no known 
classical analogue to (26) against which Moser’s result can be tested. 

Indeed, a general map will not have a known underlying Hamiltonian, let alone one that 
produces free motion across the PSS,. This is particularly true for cases such as the billiard 
boundary map where the true motion takes place in a phase space which is larger than the 
PSS. Hence, will have no exact classical analogue against which to compare. In the 
next section however, it will be seen that some comparison can be made at the quantum 
level by analogy with the semiclassical maps of [2] and [3]. 

4. Quantizing the Moser Hamiltonian 

4.1. The standard map 

In view of the classical equivalence seen in (15), it could now be asked what is the point of 
discussing the quantum mechanics since the physics behind the two will be the same. But 
this would be to miss some of the advantages that can be afforded by using the quantum 
f f ~ ~ ~ .  Having a sawtooth time-dependence in the Hamiltonian is immediately less singular 
than having delta functions, and allows the quantum properties of the generalized standard 
map to be derived in a more straightforward manner. Indeed, for any choice of m ( t , x )  with 
the correct boundary condition, the exact one-step wavefunctions can be found be gauging 
away the m(t.  x) in (13) when the Hamiltonian is quantized in the usual way. This leads 
to normalized solutions being 

where k = p / h  and o = Ep = fik2/2. If V ( x )  is periodic in x then this will be reflected 
i n k  being quantized to integer multiples of 2z. 
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In this basis, it is very easy to calculate the unitary propagator as the amplitude for 
going from a free-particle state with k = 2x17 to a free-particle state with k = 2rrn' in one 
time-step: 

where the Il, t )  states are those of (27) with k = 2x1. This gives 

From this it can be seen that only the boundary condition (IO) on m(t, x )  is important, 
and hence the unitary propagator is independent of the gauge, as was hoped. For the 
Chirikov-Taylor standard map, the boundary condition is m(1,x')  - m(0,x)  = - V ( x )  = 
-Kcos(2ax) which leaves 

where Jn(z) is a Bessel function [22]. This is the exact unitary propagator [23,24]. 
Furthermore, this approach leads to a way of writing the unitary propagator as a time- 

ordered exponential [25], rather than as the product of two unitary operators as is the'case 
in the conventional approach. Namely, U for one time step can be written as 

where ? indicates timeordering. This can be related to the conventional unitary propagator 
for a 'kick' at the end 

by using the well-known operator identity 

(33) 

with h-independent operators, A and C, that need not commute?. The connection is then 
almost trivial if m(r, x )  = - t V ( x )  is chosen in h d  h is interpreted as the time 
in (33). But this is a very specific choice of gaoge, and hides many potential problems 
connected with manipulating the time-ordered integral in the exponent of (33). Indeed, it is 
partly coincidence that by using the most straightforward approach in Moser's formalism, 
the results can be shown to be exactly the same as those in the usual approach. 

It is also interesting to see that in making the connection above, the operator ordering 
choice when quantizing Moser's Hamiltonian must be the symmetric ordering, q p  + 

t This can be proved using R(p)  = e-LIAe-LC tiy differentiating and then integrating R(p) with respect to p, and 
then setting p = 1. 

1 e-Ae-C = ?A exp - dhe-"(A + C)eAA [ II 
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(4p + pq)/2.  This is because when (32) is substituted into (33) the following manipulation 
must be used: 

P A  Eoamzan and U Smilansky 

The resulting quantum Hamiltonian is identical to &os only if the classical f f ~ ~ ~  is correctly 
symmetrized before quantization. In general, the formalism that Moser introduced, will 
lead to operator ordering ambiguities, and while symmetrization works for the generalized 
standard maps, there is no guarantee that it will work in all cases. 

So far Moser’s approach has not revealed anything new in the generalized standard map 
and, as has been seen, with the appropriate transformations, the classical and quantum Moser 
results could have been deduced without Moser’s approach. The fact that Moser’s new 
approach gave the known results in this case, is not so surprising because the free-motion 
he imposes in between mappings is just the exact classical mechanics of the generalized 
standard map. The next two examples outline the quantum implications of Moser’s exact, 
classical approach for cases where the imposed classical flow is completely artificial. 

4.2. Free motion on the torus 

As with the simplicity of the classical mechanics of this model, so the quantum mechanics 
(and semiclassical mechanics) is also straightforward. Quantizing (20) in the usual way, the 
exact eigenstates are simply the plane waves along the PSS, @ n ( x )  = exp(i2zinx). which 
satisfy the periodic boundary conditions. Hence the eigenvalues for this problem are 

E* = - a E J i q z +  (34) 

where P = hk. It is clear that only a finite range of n gives real eigenvalues, and so 
is only Hermitian in a finite-dimensional Hilbert space which is parametrized by k .  

Classically this is because the energy shell acts as the boundary of the PSS, which, likewise, 
restricts the classical motion. Having an ‘energy-dependent’ Hamiltonian will thus be a 
generic feature of the application of the Moser approach to the Psss of two-dimensional 
conservative systems. 

The most important question now is how these quantum results are related to the known 
results for the 2 4 0 ~ s .  Consider for a moment the Same question for any conservative 
system, where the PSS is dimensionally smaller than phase space. In such a case the 
Hamiltonian for the full flow and the Moser Hamiltonian will be distinctly different. Indeed, 
there might seem no a priori reason why quantizing Moser’s approach should lead to any 
of the quantum results (e.g. the eigenvalues) of the full system. Yet the equivalence of the 
stroboscopic flows on the Pss for the two approaches suggests that the quantum properties 
of the full system can be studied through the unitary time-development operator U,. This is 
the quantum equivalent of the classical Poincari map within Moser’s approach. In analogy 
with other semiclassical [2] or semiquantum [3] maps of the Pss onto itself, the quantization 
condition on k to get the eigenvalues of the full system is then 

det(1 - U l ( k ) )  = 0 (35) 

where it is assumed that the elements of Ul(k)  implicitly contain any phases that appear 
through the boundary conditions imposed. These phases will be Maslov-like, with, for 
example, a factor of exp(-in) for each time a path corresponding to a given element of 
Ul(k )  encounters a boundary with Dirichlet conditions imposed. For generic systems, the 
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determination of the correct phases for each element will be a complex task Fortunately, 
for the systems studied here, they are easy to include. 

It might be wondered how this quantization condition can be motivated without 
appealing to analogy. Certainly, with no assumed knowledge as to the underlying billiard 
system, (35) has not the same physical significance. Once this knowledge is included, 
however, it is then possible to use the fact that the eigenstates of the underlying system are 
completely independent of the fictitioustime used in the Poincark mapping. Any quantity 
on the PSS associated with an eigenstate must then behave likewise. 

Time development in fictitious time is achieved (stroboscopically) by acting on a given 
function with UI. So any function on the PSS associated with an eigenfunction of, the 
billiard must be completely unchanged when operated on in this way, even up to a phase. 
Otherwise, there would still be some fictitious time dependence that could be observed when 
normalizing an eigenfunction of the billiard with $*(T, t) and $(T, t )  corresponding to the 
same real time t ,  but different fictitious times. This requirement for complete independence 
of fictitious time leads to (35) as the quantization condition. 

For the 2-torus, in the basis of plane waves on the Pss, U1 is diagonal with elements 
= exp(iru,) where the 01, are the quasi-energies. For cases such as this where Moser’s 

Hamiltonian is independent of fictitious time, they will be related to the eigenvalues of 
by E,, = --E& + p where @ is the phase arizing from the boundary conditions. It then 
follows from (35) that the quantization condition becomes 01” = 2mn for some n and m. 
Using the connection with the E”, and the fact that p = 0 for periodic boundary conditions 
this can be written 

2 

k2 = (2nn)’ + (T) 
which gives the exact quantum eigenvalues for the free particle on the torus. Note also that 
if Dirichlet, rather than periodic, boundary conditions are imposed on the sides of length 1, 
then the same problem can be treated classically by using one end of the rectangle as the 
Pss and doubling the the length travelled in the orthogonal direction to account for the 
reflection. This simply replaces a in (36) by 2a, which again gives the exact eigenvalues. 

This exactness cannot be explained away as for the standard map, since the ‘correct’ 
classical motion now extends out of the PSS, and so Moser’s imposed flow is totally artificial. 
Indeed, in all cases where the Pss and phase space are different, Moser’s flow will necessarily 
be artificial, and it is only the equivalence of the mapsthat allows any connection to be made 
with the quantum results. Nevertheless, the simple (almost trivial) geomeq underlying the 
above system makes it somewhat special. It cannot therefore be implied from this that 
Moser’s approach will always lead to the exact eigenvalues, as will be seen below. 

4.3. Boundary maps for billiards 

The space and time independence of when applied to the circle billiard (26), also 
makes the quantum mechanics very simple. The exact eigenstates are the free-particle 
waves on the boundary, = exp(f2ninx), and the quasi-energies or, can be written 

where the n comes from the phase change on reflection of every path crossing the Pss 
(boundary with Dirichlet conditions imposed) and k = P / h  can take any value provided 
ka n. 
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As for the 2-torus, the quantization condition can be expected to come from (35). This 
looks very similar to the billiard quantization condition in 131, with Ul replacing S, where 
S is a semiquantum scattering matrix. Applying (35) leads to the allowed values of k 
satisfying cu.(k) = Zmn, or 

where qn(k) = d-. This is almost the condition that comes from the WKB approach 
[6]. The difference is interesting and important; the WKB version of (38) has an extra -n/4 
on the right-hand side coming from the caustic that every path encounters when travelling 
from one point on the boundary to another. This extra term is necessary in order to define 
the correct semiclassical energies. The reason that Moser’s approach fails to incorporate 
this term is because the restriction to the Pss loses information on the underlying dynamics, 
and so the phases have to be added in by hand. 

Since all generating functions h(x0. XI) are defined only up to the addition of constants, 
the correct WKB quantization condition (incorporating the reflection and caustic) can. be 
found by adding the classically zero amount, -3nR/2, to h(xo, X I )  when it is first defined 
in (21). This leaves the generating function identical to the full action including the correct 
‘Maslov’ phase expected for the paths under consideration. These are paths with fixed 
angular momentum which start at all points on the boundary, and hence travel as a family 
with a caustic half way along their length. 

Unfortunately, it is not clear how the Maslov phase should be included for billiards 
(or other systems) where the families of trajectories form caustics in certain regions of 
coordinate space, but not others. The Ztorus studied above was a special case since, with 
no reflections or caustics, the phases are all zero. For completely ergodic billiards, the lack 
of any conserved quantity like angular momentum might stop the caustics appearing, but 
the orbits will still all undergo one reflection and so the generating function should at least 
have -7rR added on. For the boundary maps from integrable billiards, then if the conserved 
quantity can be identified as the momentum in the problem, it should be possible to apply 
the same argument as above. Otherwise, it is not clear from this how any extra phases 
should appear. 

Perhaps the most important point however, is that (38) will only give the semiclarsical 
eigenvalues at best. Yet the quantization was done exactly and at no point was the 
semiclassical limit h + 0 taken. This focuses attention back onto the meaning of the 
classical HMO,, which has no known analogue. The point is that while H M ~ ~  is undoubtedly 
the correct classical Hamiltonian for the situation it is describing, it corresponds to a 
fundamentally different classical system to the billiard system it derives from. 

This difference comes about because of Moser’s specific choice of extrema. In principle, 
any choice of extremal path would have sufficed provided that (5) could be inverted. But 
by restricting the motion to being on the PSS, Moser is choosing a different classical flow 
to that inside the billiard. The crucial point is that all these different classical flows give 
the same action between any two points along their extrema. 

In particular, given any two points on the boundary, the value of the classical action for 
any extremal motion between the points is, by construction, the same whether calculated 
using the inside of the billiard, or using the ‘action’ in the Moser formulation. In order for 
this to occur it is necessary for the action in Moser’s approach to be no longer additive, in 
the sense that if a given path (on the PSS) is split into segments then the sum of the actions 
on these segments is not the same as the action of the whole path. Also, as was seen above, 



Quantization of monotonic twist maps 1383 

the Moser approach is unable to account for the Maslov phases that appear, but provided 
that these can be added in by hand then the classical infomiation in both is the same for all 
the extremal paths. 

Now consider defining the Feynman path integral to calculate the propagator between 
two points. It is well known that in the semiclassical limit, the dominant terms are given 
by the extremal classical paths, with the important quantities appearing being the actions 
and phases along these paths. In this sense, albeit heuristic, it might be expected that the 
propagator calculated within Moser’s picture would agree with that calculated inside the 
billiard for a single chord, but only at leading-order. The terms at OF’) will be different 
because the neighbouring non-classical paths that the quantum mechanics will explore will 
be different. 

Nevertheless, if this is hue, then one can only expect Moser’s approach when applied 
to a billiard system to produce answers correct to O(?i2) which is exactly what has been 
found above. For the circle, the difference from the exact eigenvalues is only about 6% of 
the mean-level spacing which is itself at O(?i2) (see [6] for more details). Indeed, the Moser 
result is only the leading-order result in this case. It is not known whether this would be the 
case for all billiards. Certainly, the average error will not grow in the mean-level spacing if 
the above argument holds, but it could be sufficiently large to obscure the exact spectrum. 

Achieving accuracy to OF2) is also reminiscent of the errors incurred by making a 
canonical transformation, [26]. Now, Moser’s approach is clearly not equivalent (in this 
case) to simply canonically transforming the coordinates, since it results in a change in both 
the dimension of phase space and in the classical dynamics. However, it does bear some 
of the hallmarks of quantizing using action-angle variables. This does involve a canonical 
transformation, and when an integrable system is viewed using action-angle variables, the 
caustics are not evident. Thus if the system is quantized in this representation, the quantum 
results will differ in two ways from those obtained when quantizing in a more typical 
coordinate representation. First, the canonical transformation will result in differences at 
O(?i2), and secondly the Maslov phases associated with the caustics will not appear. Both 
of these problems also arise in Moser’s technique, though at present the precise connection 
with the action-angle approach is not understood. 

~ 

5. Iterating the mapping 

Another question that can be addressed in this approach is whether the iteration of the map 
commutes with quantization of the Moser Hamiltonian. This can be tested by, for example, 
showing that the generating function for N mappings, h(x0, XN), leads to quasi-energies 
EL” such that &AN’ = NE:). However, not all monotonic twist maps remain monotonic 
twist maps under iteration, as Moser points out in [I]. The twist condition (1) means that a 
small vertical line element, (0, Spa), will be mapped to a new element, (8x1. apt) lying at 
an angle 0 to the vertical where 0 e 0 < x taken in the clockwise direction. Iterating such 
a map once will cause the line element to end up at an angle 20 to the vertical which can 
cover the range 0 < 28 < 2x and is thus not necessarily a monotonic twist mapping. 

The new monotonic twist condition is clearly ax2japo t 0. For the generalized standard 
map it is easy to show that 

- 2 - V”(X1) axz _ -  
aP0 

(39) 

where the primes indicate differentiation with respect to position. For the Chirikov-Taylor 
mapping, V ( x )  = Kcos(2nx). this is monotonic if K c 1/2nZ, but no way was found 
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for constructing the exact Moser Lagrangian for the once-iterated map. Since the allowed 
values of K are very small, however, this suggests a perturbative approach at first order 
in K, or more generally IVI. For general V ( x )  this results in the following approximate 
generating function: 

P A  Boasman and U Smilansky 

which is like using the 'weak perturbation' approximation, XI = (XZ  + x0) /2 .  This in turn 
leads to the Moser Lagrangian 

- iV' (2 t  - 1/2) - 2V(X) (41) 

which gives x = 0, and integrates to 'exactly give (40) for all potentials. In spite 
of appearance, the Lagrangian is perfectly well behaved at t = 1/2  as can easily be 
checked. However, in converting to the Moser Hamiltonian, momentum- and time- 
dependent potentials appear that made quantization impossible. Thus, it was not possible 
to check whether iteration and quantization commute for this case, although more work is 
being done on this question. 

For the examples of the 2-torus and circle billiard however, the check can be made very 
easily. In both cases, the momentum is unaffected by the iteration while for N mappings 
(or N - 1 iterations) the positions vary as follows: 

N 
Circle billiard x~ = xg + - cos-' 

A 
(43) 

In both cases this leads to classical Moser Hamiltonians corresponding to N mappings, 
H g i ,  being given by Hence, the quasi-energies scale in exactly the 
way that they do when the quantum unitary operator is iterated: U") = U N .  This proves 
the commutation of the iteration with the quantization for these systems. 

= N x 

6. Discussion 

While Moser's idea gives an interesting new slant on the classical and quantum mechanics 
of area-preserving maps, it is by construction arather artificial approach. It should therefore 
be viewed more as a new mathematical technique for studying such mappings rather than a 
key to understanding the existing physics in a deeper way. The examples given herein are 
thus intended to show how the Moser technique might be applied, rather than exhaustively 
study the physics behind the systems. 

The main obstacle to studying more generic systems is that, in such cases, the 
Moser Lagrangian is generally dependent on the fictitious time, and has a highly complex 
dependency on the position and velocity on the Pss. This makes the Legendre transform to 
the Hamiltonian, and the ensuing quantization with complicated operator-ordering problems, 
very difficult; more difficult than was felt necessary for the present needs in view of the 
subtle points raised above. 
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Indeed, the most interesting points raised by the quantization of monotonic twist maps 
using the Moser approach, are just those subtle ones that were outlined above. The classical 
and quantum properties of Moser's technique when generalized to different motions are not 
as yet understood. The cat map, for example is known to have an underlying exponential 
flow [I31 in a manner very similar to that introduced by Moser. However, it is not known 
how to invert (5) for this motion. It is probable that operator ordering ambiguities will 
also appear when different extremal motions are imposed in order to find the Lagrangian in 
terms of the map. While it is hoped that symmetrizing the operators will consistently deal 
with these, there is no proof that this is the case. Furthermore, there remain many subtle 
points surrounding the quantization of families of classical systems all of which have the 
same action but different dynamics. Study of such questions will be reserved for a later 
paper. 
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